Before the featured portal process ceased in 2017, this had been designated as a featured portal.
Page semi-protected

Portal:Mathematics

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

The Mathematics Portal


Mathematics is the study of numbers, quantity, space, pattern, structure, and change. Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered.

Refresh with new selections below (purge)

Selected article - show another


Leonhard Euler.jpg
Leonhard Euler
Image credit: Emanuel Handmann

Leonhard Euler (pronounced oiler; IPA /ˈɔɪlər/) (April 15, 1707 Basel, Switzerland - September 18, 1783 St Petersburg, Russia) was a Swiss mathematician and physicist. He is considered to be the dominant mathematician of the 18th century and one of the greatest mathematicians of all time; he is certainly among the most prolific, with collected works filling over 70 volumes.

Euler developed many important concepts and proved numerous lasting theorems in diverse areas of mathematics, from calculus to number theory to topology. In the course of this work, he introduced many of modern mathematical terminologies, defining the concept of a function, and its notation, such as sin, cos, and tan for the trigonometric functions.

View all selected articles Read More...

Selected image - show another

low-resolution ASCII-art depiction of the Mandelbrot set
Credit: Elphaba

This is a modern reproduction of the first published image of the Mandelbrot set, which appeared in 1978 in a technical paper on Kleinian groups by Robert W. Brooks and Peter Matelski. The Mandelbrot set consists of the points c in the complex plane that generate a bounded sequence of values when the recursive relation zn+1 = zn2 + c is repeatedly applied starting with z0 = 0. The boundary of the set is a highly complicated fractal, revealing ever finer detail at increasing magnifications. The boundary also incorporates smaller near-copies of the overall shape, a phenomenon known as quasi-self-similarity. The ASCII-art depiction seen in this image only hints at the complexity of the boundary of the set. Advances in computing power and computer graphics in the 1980s resulted in the publication of high-resolution color images of the set (in which the colors of points outside the set reflect how quickly the corresponding sequences of complex numbers diverge), and made the Mandelbrot set widely known by the general public. Named by mathematicians Adrien Douady and John H. Hubbard in honor of Benoit Mandelbrot, one of the first mathematicians to study the set in detail, the Mandelbrot set is closely related to the Julia set, which was studied by Gaston Julia beginning in the 1910s.

Did you know...

                         

Showing 7 items out of 75

WikiProjects

The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.

WikiProjects

Project pages

Essays

Subprojects

Related projects

Things you can do

Subcategories


Select [►] to view subcategories

Topics in mathematics

General Foundations Number theory Discrete mathematics
Nuvola apps bookcase.svg
Set theory icon.svg
Nuvola apps kwin4.png
Nuvola apps atlantik.png


Algebra Analysis Geometry and topology Applied mathematics
Arithmetic symbols.svg
Source
Nuvola apps kpovmodeler.svg
Gcalctool.svg

Index of mathematics articles

ARTICLE INDEX: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z (0–9)
MATHEMATICIANS: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Related portals

Portal:Algebra Portal:Arithmetic Portal:Category theory Portal:Computer science Portal:Discrete mathematics
Algebra Arithmetic Category
theory
Computer
science
Discrete
mathematics
Portal:Logic Portal:Mathematical analysis Portal:Mathematics Portal:Physics Portal:Science Portal:Set theory Portal:Statistics Portal:Topology
Logic Mathematical analysis Mathematics Physics Science Set theory Statistics Topology


In other Wikimedia projects

The following Wikimedia Foundation sister projects provide more on this subject:

Wikibooks
Books

Commons
Media

Wikinews 
News

Wikiquote 
Quotations

Wikisource 
Texts

Wikiversity
Learning resources

Wiktionary 
Definitions

Wikidata 
Database